HBK’s digital algorithm can map EV motor efficiency 10 times faster than analog systems

In order to maximize an EV’s range for a given battery capacity and vehicle weight, engineers try to eke out as much performance as possible from the electrical and mechanical systems. Using a process called efficiency mapping, they determine the “sweet spots” of a powertrain—the regions of the torque-speed curve where the system operates at peak efficiency—and design the components to operate in the maximum efficiency zone as much as possible. The problem is that efficiency mapping is a costly and time-consuming process, often occupying expensive equipment for weeks on end. 

Using a process called efficiency mapping, engineers determine the “sweet spots” of a powertrain—the regions of the torque-speed curve where the system operates at peak efficiency. This is a costly and time-consuming process.

To test and optimize powertrains, automakers turn to companies like HBK, a provider of test and measurement equipment. HBK’s systems are used to evaluate all aspects of an EV’s powertrain, including the motor, controller, gearbox and inverter. The company says its latest product line, the eDrive Power Analyzer packages, can dramatically reduce the time it takes to create an efficiency map.

Charged recently spoke with HBK Engineer Mitch Marks, who described how eDrive Power Analyzers employ an innovative digital algorithm that maps motor efficiency in a fraction of the time that it used to take using analog methods.

Efficiency mapping with cycle detect

Charged: HBK says its process cuts testing time by nearly a factor of ten. What is it about the efficiency mapping process that takes so much time?

Marks: Powertrain efficiency varies primarily with speed and torque, as well as a few other factors. Our equipment measures battery power, inverter power and motor power to determine each component’s efficiency at different torque-speed combinations. Using a dynamometer, we program torque and speed parameters for every point of the vehicle’s operating range, measure the input and output powers of various components, and use those figures to calculate the efficiency of each section. Once the data points have been mapped, we can see details about how the entire propulsion system operates, and the powertrain can be designed to optimize efficiency. 

Efficiency mapping sounds simple in principle, since we’re just looking at a few hundred operating points on the torque-speed spectrum. But the efficiency also varies with gear ratio, temperature and even the battery’s state of charge. Suddenly, all these real-world variables multiply into maybe 50,000 unique scenarios for a single powertrain, and that could tie up a testing rig for weeks. 

A traditional power analysis uses a technology called a phase-locked loop. Basically, it’s a piece of circuitry that tracks a frequency. It’s an analog thing that is very slow in nature, and usually tuned at 60 Hz. We asked, “Why is everybody using a power-line tool for vehicle development? Your car doesn’t just go 12 miles an hour.”